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ABSTRACT

We consider thermal conduction in a classical many body system which is in

contact with two isothermal reservoirs maintained at different temperatures. We

calculate from first principles, the probability that when observed for a finite time, the

heat flux of a finite system flows in the reverse direction to that required by the Second

Law of Thermodynamics. Analytical expressions are given for the probability of

observing Second Law violating fluctuations, in this system. These expressions

constitute an application of the Fluctuation Theorem to the problem of thermal

conduction.  The expressions are tested using nonequilibrium molecular dynamics

simulations of heat flow between thermostatted walls.

KEY WORDS:  fluctuation theorem; heat flow; Second Law of Thermodynamics;

simulation
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1. INTRODUCTION

In a nonequilibrium system thermodynamic, Xi  or mechanical fields, Fe , do work on the

system which prevents it from relaxing to equilibrium.  This work is proportional to the

product of the thermodynamic or mechanical force, the system volume, V, and the

dissipative flux, J.  The Second Law of Thermodynamics implies that for large systems

the average work done by the external forces and fields and the associated total entropy

production are positive. This is in spite of the fact that the microscopic equations of

motion are reversible. Recently there has been some progress towards understanding the

microscopic origin of this irreversibility. The fluctuation theorem [1-5]  (FT) gives a

formula for the logarithm of the probability ratio that in a thermostatted nonequilibrium

system subject to a dissipative mechanical field, the time averaged dissipative flux takes

on a value, A, to minus the value, namely -A. This formula is an analytic expression for

the probability, for a finite system and for a finite time, that the dissipative flux flows

in the reverse direction to that required by the Second Law of Thermodynamics. This

theorem is quite general and has been shown to apply to classes of both deterministic

and stochastic systems.

To date the Fluctuation Theorem has been applied almost exclusively to mechanical

rather than thermal nonequilibrium systems (for an exception see [5]). These mechanical

systems were thermostatted using the deterministic and stochastic thermostats that

have been developed for nonequilibrium molecular dynamics computer simulation over

the last two decades.  The use of these fictitious mathematical thermostats has been felt

by some to reduce the relevance of the FT, since these thermostats do not actually

occur in nature; they are mathematical devices developed to correctly calculate transport

coefficients.  Recently we have proposed a local version of the FT and applied it to

Poiseuille flow of a fluid between thermostatted walls.  In this system the mathematical

thermostats only operate in walls that are remote from the fluid so the question raised
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by the use of artificial thermostats is thereby removed.  The local FT applies to the

fluid system which is not subject to any artificial dynamics or thermostatting.  In that

paper the dissipative field, gravity, was however still mechanical.

In the present paper we again develop a Fluctuation Theorem for a system where the

thermostats are remote from the actual system under consideration but we go further.

We consider the application of the theorem to a thermal transport process where it is

the boundary conditions which prevent the system relaxing to equilibrium. The example

we consider is thermal conduction in a cell which is in contact with thermostatted

reservoirs which maintain a constant temperature difference across the thermal

conduction cell.

The thought experiment we have in mind is the following.  At t=0 we have three

equilibrium systems, H,0,C at temperatures T T TH C, ,0  where for simplicity

T T TH C0 2= +( ) / .  Again for simplicity we assume that each of the systems is

composed of atoms with the same interatomic interactions and that the number of

atoms in the T TH C,  systems, N NH C, , is each equal to N NT,≠ 0 . At t=0 the three

systems, are brought into thermal contact.  We assume that by some means the H,C

regions are maintained at their initial temperatures.  After thermal contact we expect

that the 0-system will be driven away from equilibrium as heat flows from the hot

reservoir H through the 0-system towards the cold reservoir.  After relaxation of initial

transients which last a time, τM , we expect the 0-system to relax not to equilibrium but

to a unique steady state defined by N0 , T TH C,  and the conduction cell s geometrical

dimensions.  We do not consider the situation where for large temperature gradients

non-steady behaviour  may occur (eg Rayleigh-Bernard).
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For this system we derive expressions for the logarithm of the probability that the total

time averaged entropy production Σ Σt

t

t ds s≡ ∫( ) ( )1
0

, in the conduction cell takes on a

value, A, compared to minus that value. If the instantaneous irreversible entropy

production is calculated as Σ ≡ =∑σV J VXi i  where V is the system volume, σ  the

so-called entropy source strength and the sum is over the product of all conjugate

thermodynamic fluxes, Ji , and forces, Xi , then

ln
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We give a generalised expression for the entropy production so that equation (1) is

correct for systems where the imposed temperature gradient may be arbitrarily large.  In

the weak gradient limit this expression reduces to the usual expression from linear

irreversible thermodynamics.

From (1) it is trivial to derive an expression for the probability that for a finite time, the

Second Law of Thermodynamics is violated Σt < 0.  If ... Σ t >0  denotes an average over

all fluctuations in which the time integrated entropy production is positive, then,
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and the probability of Second Law violations becomes exponentially small with

increased time of violation, t, and with the number of particles (since Σ  is extensive).

2. MICROSCOPIC DESCRIPTION OF THERMAL CONDUCTION

Experimentally there are a number of ways in which the thermal walls can be

thermostatted at their initial temperatures. If the walls are made of high thermal

conductivity material a coolant may be circulated through channels in the reservoirs.
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Alternatively if the heat capacity of the reservoirs is huge compared to that of the

thermal conduction cell, then the temperature variation in the two reservoirs over

relevant observation times, may be regarded as insignificant.  For theoretical analysis

both of these mechanisms are too complex.  Instead we employ the so-called Nos -

Hoover thermostat in the reservoir regions in order to maintain these regions at a fixed

temperature.  Although this thermostat does not exist in nature its impact on the

system of interest, namely the thermal conduction cell is only indirect.  One could argue

that the properties of the thermal conduction cell should be independent of whether the

reservoirs are maintained at a fixed temperature by virtue of the circulation of a coolant,

the use of large heat capacity reservoirs or the use of a fictitious thermostat such as the

Nos -Hoover thermostat.

The aim is to derive fluctuation formulae for the transient response.  We consider the

system initially at equilibrium (because then the phase space distribution function is

known).  At this stage the whole system is at the same temperature (equal to the mean

temperature of the steady state system).  The temperature gradient is then applied and

a heat flux develops.

The equations of motion for all the particles in the combined systems, H,0,C are:

˙

˙

q p

p F p p
i i

i i H i i C i iS T

=
= − −α α

(3)

and

d

dt Q m
g k TH C i

B H C
i H C

α /
/

/

( )= − +










∈
∑1

1
2p

(4)

where g is the degrees of freedom of the system, Si and Ti are switches equal to 1 or 0:

Si is are only non-zero for particles in region H and Ti is only non-zero for particles in
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region C.  For simplicity, assume that the walls are sufficiently dense that the particles

from region 0 do not penetrate either of the reservoir regions. The details of the

interatomic forces implicit in the { }Fi  will be described in Section 5. It is important to

note that in the 0-region and the H,0 and C,0 interfaces, the equations of motion can be

made arbitrarily realistic by improved modelling of the interatomic forces.  In the 0-

region there are no unphysical forces.

In the thermal reservoirs where either Si  or Ti  =1 the thermostatting terms in the

equations of motion are unphysical in the sense that the additional terms do not exist in

nature (as discussed above).  The additional so-called Nos -Hoover, thermostat ensures

that the reservoir regions are maintained at constant kinetic temperatures, T TH C, .  In

the long time limit

lim ( )
/ ,

/
/t

H C t
H C

T B

i t

i H C

d
dt T N k m→∞ ∈

= ⇒ ≡ + ∑α
0 1

3 1

2p
(5)

where we use the notation B
t

dsB st
t

= ∫1
0

( ) for the time-average of any phase variable,

B.  The extensive constant Q controls the timescale for fluctuations in the kinetic

temperature, T TH C, .

3. TRANSIENT FLUCTUATION THEOREM FOR HEAT CONDUCTION

We assume that the composite system is at equilibrium at t=0 and that the initial phase

space distribution, f t( , )ΓΓ  is canonical:

f
H Q

d d d H Q

H C

H C H C
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exp [ ( ) ( ) ]

exp [ ( ) ( ) ]
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ΓΓ

ΓΓ ΓΓ
0

2

2

0 0
2 2

0 0
2 2

=
− + +[ ]

− + +[ ]∫
β α α

α α β α α
. (6)
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where β0
0

1=
kT

 and H p m qi0
2 2= +∑ / ( )Φ  is the internal energy.  We note that in an

ergodic equilibrium system, Nos -Hoover dynamics is expected to generate phases, ΓΓ ,

which are distributed canonically.

The phase space compression factor, Λ( )ΓΓ , defined from the Liouville equation,

df t
dt

f t
( , )

( , ) ( )
ΓΓ ΓΓ ΓΓ≡ − Λ (7)

is

Λ ≡ ∂
∂

• + ∂
∂

• + ∂
∂

•

= − −

ΓΓ
ΓΓ̇ ˙ ˙

α
α

α
α

α α

H
H

C
C

H H C CdN dN

(8)

where d is the Cartesian dimension.  Thus

f t t f ds s

f ds dN s dN s

t

t

H H C C

( ( ), ) ( ( ), )exp[ ( )]

( ( ), )exp[ ( ) ( )]

ΓΓ ΓΓ

ΓΓ

= −

= +

∫

∫

0 0

0 0

0

0

Λ

α α

(9)

From the equations of motion we see that the rate of change of the internal energy is,

˙ ˙ / ˙H m

K K

i i i i

H H C C

0

2 2

= • − •

= − −

∑p p F q

α α
(10)

where Ka  is the instantaneous kinetic energy of region a.
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The probability ratio of observing trajectories and anti-trajectories originating from

phase regions δ δΓΓ ΓΓ( ), ( )*0 0  respectively, is given by the probability density at the

initial phase points multiplied by the initial phase volume.  The phase volume at the

initial point of the anti-trajectory is equal to that about the final point of the original

trajectory (see figure 1).  The ratio of these phase volumes at the beginning and end is

just the phase space contraction.

In general,

Pr( ( ))
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( ( ), )

( ( ), )

( ( ), )

( ( ), )

( ( ), )
( ( ), )

( ( ), )
( ( ), )
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* * *
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δ
δ

δ
δ

δ
δ

ΓΓ
ΓΓ

ΓΓ
ΓΓ

ΓΓ
ΓΓ

ΓΓ
ΓΓ

ΓΓ
ΓΓ

ΓΓ
ΓΓ

0

0

0 0

0 0

0 0

0 0

0 0
0

0 0

0 0
0

=

=

= −

f

f

V

V

f
f t

V
V t t

f
f t

e t tΛ

(11)

equilibrium nonequilibrium
apply time reversal
mapping, MT, at t/2
  MT(q,p)=(q,-p)

ΓΓΓΓ(0) ΓΓΓΓ(t)
δΝΓΓΓΓ(0)=f(ΓΓΓΓ(0),0)δVΓΓΓΓ(0)=δNΓΓΓΓ(t)(t)

δΝΓΓΓΓ∗∗∗∗ (0)=f(ΓΓΓΓ∗∗∗∗ (0),0)δVΓΓΓΓ∗∗∗∗ (0)=δNΓΓΓΓ∗∗∗∗ (t)(t)

           =f(ΓΓΓΓ(t),0)δVΓΓΓΓ(0)

note f(ΓΓΓΓ(t),0)≠f(ΓΓΓΓ (t),t)
ΓΓΓΓ∗∗∗∗ (0)=MT(ΓΓΓΓ(t))

ΓΓΓΓ∗∗∗∗ (t)=MT(ΓΓΓΓ(0))

t=0 t

Fig. 1.  A schematic diagram showing the phase space contraction as a function of time for a

nonequilibrium system.
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Now consider 
f
f t
( ( ), )
( ( ), )
ΓΓ
ΓΓ

0 0
0

 for this system. For a NH extended canonical distribution,

f
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H Q
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H H

H H
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
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= ∫ +
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β α α
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H H H C C C

s s s

dN t t N t t O

( ) ( ) ˙ ( ))]

exp ( ( ) / ( ) / ) ( )

+[ ]

= − − +[ ]

α α

β α β α β0 2 1

(12)

The O(1) corrections will be dependent any constraints imposed on the wall particles

(see Section  5).

 Combining equations (11) and (12) gives,
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C H

C H

t

H C

Clearly the probability ratio of observing conjugate values for the time averaged

difference in the thermostat multipliers is,

Pr( ( ) ( ) )
Pr( ( ) ( ) )

exp
α α

α α
C H

C H
T

H C

C H

t t A
t t A

dN
T T
T T

At
− =

− = −
= −

+








 . (14)

In deriving (14) it is not necessary to assume that all transient trajectory segments that

have the specified value of α αC Ht t( ) ( )−  originate in the same small contiguous

subregion of phase space, δΓΓ( )0  or δΓΓ*( )0  respectively and hence (14) is valid even

when there are multiple islands of phase space which generate the specified conjugate

values of  α αC Ht t( ) ( )− .
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Equation (14) is a statement of the Transient Fluctuation Theorem for heat flow

between Nos -Hoover thermostatted walls.  If the steady state exists and is unique then

a steady state Fluctuation Theorem is true asymptotically [7].

lim ln
Pr( ( ) ( ) )

Pr( ( ) ( ) )
/

t

C H

C H
T

H C

C H

t t A
t t A

dN
T T
T T

At
→∞

− =
− = −











−
+









 =α α

α α
1 (15)

These two equations are valid outside the linear regime.  The only caveat is that the

steady state formula requires the existence of a unique steady state, regardless of the

initial t = 0 equilibrium phase, ΓΓ( )0 . Equations (14,15) are clearly consistent with the

Second Law of Thermodynamics in that it is exponentially more probable for heat to

flow from hot to cold in which case, α αC Ht t( ) , ( )> <0 0 .

4. NONLINEAR RESPONSE THEORY FOR HEAT CONDUCTION

In order to better understand this system we will calculate the time dependent response

of an arbitrary phase function B( )ΓΓ . Following Yamada and Kawasaki [5, 6], the

distribution function for the system considered in this work, at time t after the

application of a temperature gradient is given by:

f t ds s H t Q t t

f ds H s Q s s s s ds s

f
dN

t
H C

t
H H C C

t

T

( , ) exp[ ( )]exp[ ( ( ) ( ( ) ( )))]

( , )exp [ ˙ ( ) ( ( ) ˙ ( ) ( ) ˙ ( )))]exp ( )

( , )exp{
(

ΓΓ

ΓΓ

ΓΓ

= − − − − + − + −

= − + +

= −

∫

∫ ∫
− −

0

2 2

0 0

1 2

0

0

Λ

Λ

β α α

β α α α α

TT T
T T

ds s sH C

H C

t
H C

−
+

−
−

∫)
[ ( ) ( )]}

0
α α

   (16)
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From this distribution function, the transient time correlation function (TTCF)

expression for the ensemble average of a phase variable, B, is given by:

B t B
dN T T

T T
ds B tT H C

H C

t
H C( ) ( )

( )
( )[ ( ) ( )]= − −

+
−∫0 0 0

0
α α (17)

By comparing with the Kawasaki distribution function for a system driven by an

external mechanical force (e.g. see equation 7.25 of [6]), we see that although the system

is a thermal nonequilibrium system where boundary conditions rather than external

mechanical forces drive the system away from equilibrium, there is a formal resemblance

of the nonlinear response to that obtained if we applied a mechanical field

F
k T T

e
B H C= −( )

2
(18)

to the system.  In this case the intensive dissipative flux J can be identified as

J dnT H C( ) [ ( ) ( )]ΓΓ ΓΓ ΓΓ= −α α . (19)

Thus the Transient Fluctuation Theorem of equation (14) then takes on the standard

form,

Pr( )
Pr( )

exp[ ]
J A

J A
AVF tt

t
e

=
= −

= −β . (20)

Further, the integrated form of the fluctuation formula can be written as,

 p J
e

e
t

J VF t

J

J VF t

J

t e

t

t e

t

( )< =
+

>

>

0
1

0

0

β

β
(21)
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Equation (20) shows that if A is negative, then as the system size or time interval grows

the probability of observing this negative flux relative to that of observing the

corresponding positive flux increases exponentially.   In the limit of infinite t or infinite

system, where any fluctuations in the phase variables disappear, equation (20) and (21)

predict a negative value of the dissipative flux.  Since in this limit, Ḣ0 0=  and hence

2 2 0K KH H C Cα α+ =  (see equation (10)), it is straightforward to show that in this

limit, β α αJVF dNe T H C= − +( )  which is equal the phase space contraction and

proportional to the total spontaneous entropy production ( I k dN dNB H Cσ α α= +( )).

In these limits, the heat flux per unit area at the top and bottom walls must be equal and

if region C is above region H, using J A dQ dtq =  we obtain

J A dN
T T

T Tq T H C
H C

H C
= +( )

−
α α

( )
.   The heat flux is therefore positive in these limits

and with this geometry and will flow from the hot to the cold wall.  Therefore, the

fluctuation theorem given in the forms of equations (14, 20, 21) predicts that in the limit

of infinite time-interval or the thermodynamic limit, the spontaneous entropy

production must be positive, the phase space must contract and heat must flow from

the hot to the cold wall.

The ultimate explanation for the irreversibility inherent in these equations is the

assumption of causality in calculating the probabilities. We calculated the probability of

observing fluctuations from the probabilities of observation of the initial equilibrium

equilibrium phases from which these fluctuations were generated.  Had we made the

corresponding anti-causal assumption then an anti Second Law would have been

derived.

5. SIMULATIONS

In order to test the fluctuation formula given by equation (14), simulations of a two-

dimensional fluid between walls were carried out.  The system consisted of three
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sections: a fluid region of 64 particles  between two walls each containing 32 particles.

The complete system was initially in a square box with periodic boundary conditions in

the direction parallel to the walls. The equations of motion for all the particles are given

by equations (3) and (4).

For the particles in the fluid region (labelled as the 0 region), the switches Si and Ti were

set to zero at all times and therefore these particles obeyed Newtonian mechanics.  The

forces on these particles were solely due to their interactions with other particles via the

WCA pair potential [8].  The particle density of the fluid region was initially set to n =

0.4.

The wall particles were thermostatted using the Nos -Hoover thermostat and forces

were applied so that their density was maintained at a higher value of n = 1.2.  One wall

was designated the hot wall, H, and the other the cold wall, C.  In the hot wall, the

switches were set to Si = 1 and Ti = 0; whereas in the cold wall they were set to Si˚=˚1

and Ti˚=˚0.   These particles interacted with other particles via a WCA pair potential.

In addition, a spring potential was applied to prevent the walls from diffusing

( U r k r rij ij eq( ) ( )= −1
2

2)and each layer of particles in the wall were subject to a layer

force, using the method of Todd et al. [9].  These forces are non-physical and designed

ensure the wall remained intact throughout the simulation.   During an equilibration

period, the temperature in the Nos -Hoover thermostat was set to T˚=˚1.0 for both the

hot and the cold walls.  After this period, the Nos -Hoover thermostat was set to

TH˚=˚1.1  and TC˚=˚0.9 to create a temperature gradient across the cell.

In order to test the fluctuation formula, approximately 8 x 107 trajectories were

simulated.  For each trajectory, this involved sampling a starting point from the

equilibrium distribution, applying the temperature gradient and measuring the value of

Jt  for a trajectory of length t = 1.6.  The 8 x 107 values of  Jt  obtained were then used
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to construct a frequency histogram (see Figure 2) from which the probabilities required

for testing equation (20) could be obtained.  The histogram for this simulation is shown

in Figure 2.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 -1 0 1 2
A

p Jt A( )=

Fig. 2.  A histogram of the values of  Jt  obtained from simulations of a fluid between

two walls to which a temperature gradient is applied at time, 0.  The density of the fluid is

n = 0.4 and the walls are thermostatted at TH = 1.1 and TC = 0.9.  The fluid consists of

64 particles and each wall consists of 32 particles.

Equation (20) was tested by plotting 
− =

= −






1

0VF t
p J A
p J Ae

t

tβ
ln

( )
(

 versus A, as is shown in

Figure 3.  According to the fluctuation theorem for this system (see equation (20)), the

slope of this plot should be 1.  Clearly the numerical data is consistent with the

theoretical prediction.
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-1.5 -1 -0.5 0 0.5 1 1.5

A

− =

= −







1

0VFe t

p Jt A

p Jt Aβ
ln

( )

(

Fi

g. 3.  A plot  
− =

= −







1

0VF t

p J A

p J Ae

t

tβ
ln

( )

(
 versus A carried out in order to test equation (20)

for a system consisting of a fluid between two walls to which a temperature gradient is

applied at time, 0.  The behaviour predicted by equation (20) is shown by the line.The

density of the fluid is n = 0.4 and the walls are thermostatted at TH = 1.1 and TC = 0.9.

The fluid consists of 64 particles and each wall consists of 32 particles.

6.  CONCLUSION

We have derived a fluctuation expression for a system to which a temperature gradient

is applied.  The expression is consistent with the second law of thermodynamics and

predicts that the heat flow will occur from a hot region to a cold region.  The expression

was tested using numerical simulation of a two-dimensional fluid containing particles

undergoing Newtonian dynamics and interacting via  a WCA pair potential.
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